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A STRESS FIELD IN THE VORTEX LATTICE
IN THE TYPE-II SUPERCONDUCTOR

BOGDAN MARUSZEWSKI

ABSTRACT. Magnetic flux can penetrate a type-II superconductor in the form of Abrikosov
vortices (also called flux lines, flux tubes, or fluxons), each carrying a quantum of magnetic
flux. These tiny vortices of supercurrent tend to arrange themselves in a triangular and/or
quadratic flux-line lattice, which is more or less perturbed by material inhomogeneities that
pin the flux lines. Pinning is caused by imperfections of the crystal lattice, such as disloca-
tions, point defects, grain boundaries, etc. Hence, a honeycomb-like pattern of the vortex
array presents some mechanical properties. If the Lorentz force of interactions between
the vortices is much bigger than the pinning force, the vortex lattice behaves elastically. So
we assume that the pinning force is negligible in the sequel and we deal with soft vortices.
The vortex motion in the vortex lattice and/or creep of the vortices in the vortex fluid is
accompanied by energy dissipation. Hence, except for the elastic properties, the vortex
field is also of a viscous character. The main aim of the paper is a formulation of a ther-
moviscoelastic stress - strain constitutive law consisted of coexistence of the ordered and
disordered states of the vortex field. Its form describes an auxetic-like thermomechanical
(anomalous) property of the vortex field.

1. Introduction

The paper deals with a new phenomenological aspect of superconductivity. It develops
the mechanics of a vortex lattice as a new state and geometry in a medium. The supercon-
ductors belong generally to two classes of such materials. A type-I superconductor expels
magnetic flux from the material and hence is in the Meissner state. That is possible only
at the applied magnetic field strength less than its determined critical value. In contrast,
a type-II superconductor behaves in the other way. For applied field strength less than
the lower critical field that superconductor will exhibit the usual Meissner effect. Applied
fields greater than the upper critical field strength destroy the superconductivity altogether.
In between the lower Hc1 and upper Hc2 magnetic field strengths the superconductor is in
the mixed or vortex state. The second variable that determines the existence of that state is
temperature T < Tc (Tc denotes the critical phase transition temperature) [1-8].
Magnetic flux can penetrate a type-II superconductor in the form of Abrikosov vortices
(also called flux lines, flux tubes or fluxons), each carrying a quantum of magnetic flux.
These tiny vortices of supercurrent tend to arrange themselves in a triangular or quadratic
flux-line lattice [9,10], which is more or less perturbed by material inhomogeneities that
pin the flux lines. Pinning is caused by imperfections of the crystal lattice, such as dislo-
cations, point defects grain boundaries, etc. Hence, a honeycomb-like pattern of the vortex
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array presents some thermomechanical properties. In the natural state of any superconduc-
tor the termomechanical field comes from atom and/or molecular interactions both within
crystalline (solid) and amorphous (fluid) states of the material in a presence of tempera-
ture changes. Such a situation transfers itself also to the vortex state. Since the vortices are
formed by the applied magnetic field and around each of them the supercurrent flows, there
exist also the Lorentz force interactions among them. Those interactions are an origin of
an additional thermomechanical (stress) field occurring in the type-II superconductor. That
field near the lower critical magnetic intensity limit Hc1 is of the elastic character. How-
ever, if the density of the supercurrent is above its critical value and/or the temperature is
sufficiently high, there occurs a flow of vortex lines in the superconducting body. Within
such a situation vortices behave as a fluid rather than as an elastic lattice. The ”fluidity” of
the vortex array is also observed when the applied magnetic field tends to its upper critical
limit Hc2 [9,10]. In this way we meet a very interesting situation in a type-II superconduc-
tor. We can say, that two thermomechanical fields coexist in the medium. One of them is of
a pure thermoelastic character coming from the mechanical properties of crystal lattice of
the superconductor. The second one comes from the vortex array which, keeping its ther-
moelastic character near the lower magnetic field strength limit Hc1, transfers smoothly
into a ”fluid” near the upper magnetic field strength limit Hc2. The above phenomenon
(transfer and coexistence) occurs in the {(H(T ), T ) : Hc1 < H < Hc2, T < Tc} space.
However, just that second kind of field is of a peculiar (anomalous) character. Here it is,
if the temperature T0 within the entire normal state is equal to the ”left” phase transition
temperature (e.g. from superconducting to normal phase) the thermoelastic distortions in
the stress are always negative, but if that temperature is equal to the ”right” phase transi-
tion value (e.g. solid-fluid transition: melting point) those distortions are always positive
within that phase. The thermoelastic distortions within the superconducting phase con-
cerning only the vortex field behave differently. If the reference temperature T0 - ”left” is
equal to zero (0 < T0 < Tc), they tend to +∞. But if the reference temperature T0 is
equal to its ”right” value Tc those distortions are always positive within the entire super-
conducting phase vanishing in Tc. The vortex field is also of the viscous character. The
motion of vortices is damped by a force proportional to the vortex velocity. There are two
reasons of that damping. The first one comes from simultaneous interactions among mag-
netic, mechanical and thermal fields. Then the second reason occurs because the resistivity
in the area of vortex creep is the same as the resistivity of the current which would flow
inside the vortex core. Hence the viscosity coefficient reads [4]

(1) η =
Φ0µ0HC2

ρn
,

where Φ0 is the magnetic flux, µ0 denotes the permeability of vacuum and ρn is the re-
sistivity in the normal state. The paper aims at creation of a magnetothermomechanical
model both for the ”solid” and ”fluid” states of the vortex field in such defined II-type su-
perconductor. A specific definition of a stress tensor concerning the vortex field has been
introduced within a constitutive theory based on proper representation of tensors, skew-
symmetric tensors, vectors and scalars as functions of tensors, skew-symmetric tensors,
vectors and scalars [11], theory being a part of a complete nonclassical thermodynamical
model.
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2. Thermodynamical foundations

Before we focus our attention on the main aim of the paper i.e. on a formulation of the
thermoviscoelastic stress tensor for the vortex field (both for its lattice and fluid states),
we recall a fundamental structure of the themodynamical model related to thermal and
viscomechanical processes in the vortex array, the model as a background of our target
considerations.
The structure of that model consists of [12]:

(1) vector of state - set of independent variables
(2) fundamental laws

(a) balances
• continuity equation
• momentum balance
• moment of momentum balance
• internal energy balance

(b) electromagnetic field equations
(c) evolution equations of

• fluxes
• internal (hidden) variables (order parameters)

(3) entropy inequality
(4) vector of constitutive functions - set of dependent variables
(5) constitutive theory (a bridge between theory and reality) which determines a proper

mapping between vector of constitutive functions and vector of state; it consists of
laws of state, laws of processes and a residual inequality

One of the laws of state is just a mapping of the vortex stress tensor on the viscoelastic
strain and temperature, the mapping which is the aim of the paper.
Following the properties and kind of phenomena listed in the previous section, the extended
thermodynamical model for the viscoelastic field of vortices in the type-II superconductor
is presented below. We have assumed that the mass density ρ of the vortex field concerns
the density of the material in the normal state as the counterpart in the mixed type-II super-
conductor (i.e. the mass of the normal part of the bodymnormal related to the total volume
V of the material), and the energy dissipation occurs only because of the viscosity of the
vortex field caused by the ohmic-like resistivity (normal-state resistivity) inside the vortex
core [5]. Hence the general form of the state vector (the set of independent variables) reads
(cf. [12,13])

(2) C = {εij , ε̇ij , ϕ, Ai, T, T,i, ψ, ψ∗, ψ,i, ψ
∗
,i, qi, j

S
i }

where εij denotes the strain tensor, its time derivative in (2) indicates the viscoelasticity of
the vortex field, ϕ andAi are the scalar and vector potentials, respectively, T is the absolute
temperature, qi is the heat flux, ψ is the order parameter (the wave function of a Cooper
pair) and ψ∗ is its complex conjugate, jSi is the supercurrent density. The fundamental
laws, which govern set (2) are as follows

(3) ρ̇+ ρνk,k = 0

(4) ρν̇k − σik,i − εijk(jNi + jSi )Bj − fk = 0



4 B. MARUSZEWSKI

(5) ρė− σikνk,i − qk,k − (jNi + jSi )Ei − ρr = 0

(6)
1
µ0
Ai,kk − jNi − jSi = 0

(7) q̇k −Qk(C) = 0

(8) ψ̇ −Ψ(C) = 0

(9) ψ̇∗ −Ψ∗(C) = 0

(10) j̇Sk − JSk = 0

νk denotes the velocity of the vortex field point, σik is the viscoelastic stress tensor, jNk
is the normal current, Bj is the magnetic induction, fk is the body force, e is the internal
energy density, Ei is the electromotive intensity, r is the heat source distribution. Set (3) to
(10) consists of:

• the equation for vortex field whose form ensures the conservation of the vortex
mass in the sense indicated above
• the momentum balance of the vortex field where elastic interactions are due to the

Lorentz force
• the internal energy balance of the vortex field where the only dissipation occurs

because of the Joule-like heat produced by the total current
• the electromagnetic vector potential equation
• the evolution equations for heat flux and supercurrent because of the extended

thermodynamical model (2)
• the evolution equations for the Cooper pairs wave function as the order parameter

(internal variable) evolution equations
The extended thermodynamical description has been chosen here since all the interactions
run within low temperatures. Moreover, the electromagnetic field quantities satisfy the
Maxwell equations, and the following relations hold

(11) Ei = Ei + εijkνjBk

(12) Ei = −ϕ,j −
∂Ai
∂t

(13) Bi = εijkAk,j

(14) Bi = µ0Hi,

where Hk is the magnetic field strength. In the sequel we follow the assumption that ϕ
vanishes by gauging [3].The use of the second law of thermodynamics in the form of the
entropy inequality

(15) ρṡ+ φk,k −
ρr

T
≥ 0,

where s is the entropy density and φk denotes the entropy flux, gives us a possibility to
determine all the constitutive functions which, in our case form the set

(16) Z = {σij , e, s, φk, jNk , Qk, Ψ, Ψ∗, JSi }
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As we have mentioned before, we are mostly interested in the mechanical properties of the
vortex field vs. magnetic field HC1 < H < HC2. Having several possibilities to create
a proper constitutive theory we have chosen that based on representations of isotropic
tensors, skew-symmetric tensors and vectors [11].

3. Stress in a thermo-magnetic vortex field

As we have mentioned before our aim was a constitutive model of thermo-magneto me-
chanical properties of the vortex field within entire phase region {Hc1 < H < Hc2;T <
Tc} described by the stress-strain relation. If the general constitutive relation, basing on
(2) and (16), is the following

(17) Z = Z(C)

and we confine now to the situation

(18) Z = {σjk}
and

(19) C = {εij , ε̇ij , T, Bi}
where T < Tc, we are able to find the looked for constitutive stress-strain relation in a
thermomagnetic vortex array. The polynomial representation of a symmetric tensor as a
function of symmetric tensors, axial vector and scalar reads [11,14]:

σij = β1
σδij + β2

σεij + β3
σεikεkj + β4

σ(BiBj −BsBsδij) + 2β5
σεkjlεikBl+

+(β6
σεiksεljpBs + 2β7

σεljpεik + 2β8
σεikp(BjBl −BsBsδlj))ε̇klBp+

(20) +β9
σδij + β10

σ ε̇ij + β11
σ ε̇ik ε̇kj + 2β12

σ εkjlε̇ikBl+

+(β13
σ εiksεljpBs + 2β14

σ εljpεik + 2β15
σ εikp(BjBl −BsBsδlj))ε̇klBp+

+2β16
σ εljpε̇ik ε̇klBp + β17

σ (εik ε̇kj + ε̇ikεkj)+
+β18

σ (εikεksε̇sj + ε̇ikεksεsj) + β19
σ (εik ε̇ksε̇sj + ε̇ik ε̇ksεsj).

Coefficients βkσ by the generators can be functions of the following set of invariants result-
ing from the vector of state (19):

T, εkk, εijεij , εijεjkεkl, −2BjBj , εijBiBj , εkkBsBs, εijεjkBiBk,−εijεijBsBs,
(εijεjkBkBm − εijεjmBsBs)εnirεmnBr, ε̇kk, ε̇ij ε̇ij , ε̇ij ε̇jk ε̇kl, ε̇ijBiBj , −ε̇kkBsBs,

(21) ε̇ij ε̇jkBiBk, −ε̇ij ε̇ijBsBs, (ε̇ij ε̇jkBkBm − ε̇ij ε̇jmBsBs)εnirεmnBr,
εij ε̇ij , εijεjk ε̇kl, εij ε̇jk ε̇kl, εijεjk ε̇ksε̇si, εij ε̇jkεiksBs, εij ε̇jkεirsεkrpBsBp,

εij ε̇lsεjkrεklpεsimBrBpBm, εij ε̇jk ε̇ksεsirBr, εijεjk ε̇ksεsirBr.

Confining now the representation (20) to the linear form we have:

(22) σij = (β1
σ(εkk, T, BkBk)+β9

σ(ε̇kk, T, BkBk))δij+β2
σ(BkBk)εij+β10

σ (BkBk)ε̇ij
To determine the coefficients βkσ we assume expression (22) to be of the similar form as
for a thermo-visco-elastic isotropic body:

(23) σij = 2Mεij + (Lεkk − ΛΘ)δij + 2Mε̇ij + Lε̇kkδij .
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The ”material” coefficients M,L,M,L,Λ concern both the lattice and the fluid states of
vortices. The linear approximation for σik allows us to replace the temperature T to Θ,
remembering that its values should not exceed the critical one Tc. Hence, we get the
following definition of the relative temperature Θ:

Θ = 0 if T = Tc

(24) Θ =
T − Tc
Tc

, 0 < T < Tc, −→ Θ < 0

Θ = −1 if T = 0.
This way the relative temperature within the superconducting phase is always negative.
Remark that Θ cannot be defined by Tc = T0 = 0. If so, the stress (23) should tend to
infinity which contradicts physical sense.
To emphasise coexistence of the lattice- and fluid-like states we split σik (23) into the trace
and deviatoric parts as follows:

(25) σ0 = σkk,

(26) τij = σij −
1
3
σ0δij ,

(27) σ0 = (2M + 3L)εkk − 3ΛΘ + (2M + 3L)ε̇kk,

(28) τij = 2Mεkk +
2
3
Mεkkδij + 2Mε̇ij +

2
3
Mε̇kkδij

(29) σ0 = σlattice0 + σfluid0 .

In order to determine the proper form of the looked for stress-strain relation we introduce
now two parameters which determine actual state of vortices, i.e. if they are in the lattice,
the fluid or the mixed state. Since just the magnetic field intensity decides on which state
vortices the are, we propose those parameters as based on the first magnetic invariant in
(21). In this way their dimensionless form is the following

(30) α =
(
Hc2 −H
Hc2 −Hc1

)
, α =

{
0 if H = Hc2

1 if H = Hc1,

(31) β =
(
H −Hc1

Hc2 −Hc1

)
, β =

{
0 if H = Hc1

1 if H = Hc2

(32) α+ β =
{

0 if H = Hc1 or H = Hc2

f(H) if Hc1 < H < Hc2.

On defining now components (27) and (28) for the lattice and fluid states with the help of
the parameters (30)-(32) we obtain:

(33) σlattice0 = α(2µ+ 3λ)εkk + α(2µL + 3λL)ε̇kk − 3λTΘ,

(34) σfluid0 = −3βρ,
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(35) τ latticeij = 2µαεij −
2
3
µαεkkδij + 2µLαε̇ij −

2
3
µLαε̇kkδij ,

(36) τfluidij = βDε̇ij ,

where the material-like coefficients responsible for the thermomechanical properties of the
vortex field can be called as follows:

• λ, µ - Lame constants of the lattice,
• λT - thermoelastic constant of the lattice,
• λL, µL - viscoelastic constants of the lattice,
• p - pressure of the fluid,
• D - viscosity of the fluid.

As we have mentioned before we are mostly interested in mechanical properties of the vor-
tex field vs. magnetic field Hc1 < H < Hc2. Having several possibilities to create proper
constitutive law for the stress tensor σij (the main quantity of our interest), we choose it
as based on isotropic polynomial representations of functions of tensor, vector and scalar
variables [11]. Since our description is phenomenological and the vortex continuous field
results from proper averaging with respect to the characteristic volume in macroscale, we
assume that the considered lattice and fluid are isotropic. This is, of course, rough approx-
imation (the vortex lattice is of the hexagonal symmetry) but sufficient to catch the transfer
from the lattice to fluid up and to catch the viscoelastic and then viscous properties of the
vortex field up. Following [15] the required form of the stress tensor σij (p denotes the
pressure of the vortex fluid) is:

σij =
[(

1
3
αK − 2

3
αG

)
εkk −

2
3
αηε̇kk − λTΘ− βp

]
δij

(37)

+2αGεij + 2(α+ β)ηε̇ij ,
where the elastic bulk (K) and shear (G) module are as follows:

(38) 3K = 2µ+ 3λ, G = µ,

then viscous bulk (KL) and shear (GL) module are the following:

3KL = 2µL + 3λL,

GL = µL,

(39)

KL = 3D = 3η,
GL = D = η.
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4. Numerical simulations for the vortex field stress in YBCO

FIGURE 1. σkk(T, εkk) for B = 40T

FIGURE 2. σkk(T ) for εkk = 0 and B = 120T
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FIGURE 3. σkk(H, εkk)

FIGURE 4. σkk(H,T ) for εkk = −0.8
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FIGURE 5. σkk(H,T ) for εkk = 0.8

FIGURE 6. σ12(H, ε12)
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FIGURE 7. σkk(T0) for 0 < T0 < Tc, T = 50K, εkk = 0

5. Conclusions

The vortex field from the thermomechanical point of view presents a very peculiar prop-
erty. It seems to be of the auxetic-like one. The majority of materials being in the normal,
non-superconducting state behave in such a way that if the temperature T0 within the entire
normal state is equal to the ”left” phase transition temperature (e.g. from superconduct-
ing to normal phase) the thermoelastic distortions in the stress are always negative, but if
that temperature is equal to the ”right” phase transition value (e.g. solid-fluid transition:
melting point) those distortions are always positive within that phase. That fact results
from the experiment. However, from the thermodynamical model presented in the paper it
results that within superconducting phase, where the vortex field exists, the thermoelastic
distortions concerning only the vortex field behave differently from those occurring in ma-
terials being in the normal state. If the reference temperature T0 - ”left” is equal to zero
(0 < T0 < Tc), they tend to +∞ as absolute values. But if the reference temperature T0 is
equal to its ”right” value Tc those distortions are always positive within the entire supercon-
ducting phase vanishing in Tc. The theoretical model in the form of the Clausius-Duhamel
constitutive relation (the thermomechanical generalization of the Hooke law) confirms that
fact.
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